Selective activation of the MEK-ERK pathway is regulated by mechanical stimuli in forming joints and promotes pericellular matrix formation.

نویسندگان

  • Edward R Bastow
  • Katherine J Lamb
  • Jo C Lewthwaite
  • Anne C Osborne
  • Emma Kavanagh
  • Caroline P D Wheeler-Jones
  • Andrew A Pitsillides
چکیده

It is well established that local modification of extracellular matrix (ECM) hyaluronan composition is vital in the regulation of cell behavior. Indeed, the formation of articulating chick joint cavities, which requires mechanical stimuli derived from skeletal movement, is dependent upon the accumulation of an ECM rich in hyaluronan (HA). However, the mechanisms responsible for such precise mechano-dependent regulation of cell behavior and the formation of a HA-rich ECM remain undefined. Here we show that extracellular-regulated kinase 1/2 (ERK1/2) is selectively activated in cells at sites of cavity formation and activity diminished by in ovo immobilization that induces cartilaginous fusion across presumptive joint interzones. In vitro analyses offer mechanistic support for the role of mechanical stimuli in promoting a MEK-dependent activation of ERK1/2. In addition, our direct regulation of ERK1/2 phosphorylation status via modulation of its up-stream "classical cascade" activator either pharmacologically or by transfection with dominant negative or constitutively active Mek confirms the essential role for ERK1/2 activation in the elaboration of HA-rich pericellular matrices. Together, our findings demonstrate that the MEK-ERK pathway, regulated by mechanical stimuli, controls HA-rich matrix assembly. The precision of ERK1/2 activation selectively distinguishing cells at the joint line suggests that it directly contributes to the loss of tissue cohesion essential for generating HA-rich cavities between joint elements during their development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-111: EGFR, ERK, MEK Genes Expression Level in Cumulus Cells of PCOS Women Compared with Healthy Women

Background Poly cystic ovarian syndrome (PCOS) is known as a common endocrine disorder in women at reproductive ages and may cause developmental abnormality in oocyte. ERK has found as a regulator protein of Gap junctions (GJ) function and the level of exchanges between two neighbors cells, for example oocyte and surrounding cumulus cells (CCs) in the mammalian ovary. Such exchange is essential...

متن کامل

Differential roles of extracellular signal-regulated kinase 1/2 and p38MAPK in mechanical load-induced procollagen alpha1(I) gene expression in cardiac fibroblasts.

OBJECTIVE AND METHODS We have previously demonstrated that mechanical loading of cardiac fibroblasts leads to increased synthesis and gene expression of the extracellular matrix protein collagen. We hypothesised that the upregulation of procollagen gene expression in cardiac fibroblasts, in response to cyclic mechanical load, is mediated by one or more members of the MAP kinase family. To test ...

متن کامل

Different Expression of Extracellular Signal-Regulated Kinases (ERK) 1/2 and Phospho-Erk Proteins in MBA-MB-231 and MCF-7 Cells after Chemotherapy with Doxorubicin or Docetaxel

Objective(s) Curative treatment of breast cancer patients using chemotherapy often fails as a result of intrinsic or acquired resistance of the tumor to the drug. ERK is one of the main components of the Ras/Raf/MEK/ERK cascade, which mediates signal from cell surface receptors to transcription factors to regulate different gene expression. In this study, cytotoxicity and the expression of Erk...

متن کامل

Molecular mechanisms of low intensity pulsed ultrasound in human skin fibroblasts.

Soluble factors such as polypeptide growth factors, mitogenic lipids, inflammatory cytokines, and hormones are known regulators of cell proliferation. However, the effect of mechanical stimuli on cell proliferation is less well understood. Here we examined the effect of low intensity pulsed ultrasound (US), which is used to promote wound healing, on the proliferation of primary human foreskin f...

متن کامل

Thrombospondin 1 is a key mediator of transforming growth factor β-mediated cell contractility in systemic sclerosis via a mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)-dependent mechanism

BACKGROUND The mechanism underlying the ability of fibroblasts to contract a collagen gel matrix is largely unknown. Fibroblasts from scarred (lesional) areas of patients with the fibrotic disease scleroderma show enhanced ability to contract collagen relative to healthy fibroblasts. Thrombospondin 1 (TSP1), an activator of latent transforming growth factor (TGF)β, is overexpressed by scleroder...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 280 12  شماره 

صفحات  -

تاریخ انتشار 2005